Click on the image to amplify.
Atkinson, N. J., Lilley, C. J., & Urwin, P. E. (2013). Identification of genes involved in the
response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant
physiology, 162(4), 2028-2041.
Barbez, E., Dünser, K., Gaidora, A., Lendl, T., & Busch, W. (2017). Auxin
steers root cell expansion via apoplastic pH regulation in Arabidopsis
thaliana. Proceedings of the National Academy of Sciences, 114(24),
E4884-E4893.
Bellati, J., Champeyroux, C., Hem, S., Rofidal, V., Krouk, G., Maurel,
C., & Santoni, V. (2016). Novel aquaporin regulatory mechanisms revealed by
interactomics. Molecular & Cellular Proteomics, 15(11),
3473-3487.
Bergonci, T., Ribeiro, B., Ceciliato, P. H., Guerrero-Abad, J. C.,
Silva-Filho, M. C., & Moura, D. S. (2014). Arabidopsis thaliana RALF1
opposes brassinosteroid effects on root cell elongation and lateral root
formation. Journal of experimental botany, 65(8), 2219-2230
Bergonci, T., Silva-Filho, M. C., & Moura, D. S. (2014). Antagonistic
relationship between AtRALF1and brassinosteroid regulates cellexpansion-related
genes. Plant signaling & behavior, 9(10), e976146.
Boisson-Dernier, A., Franck, C. M., Lituiev, D. S., & Grossniklaus,
U. (2015). Receptor-like cytoplasmic kinase MARIS functions downstream of Cr
RLK1L-dependent signaling during tip growth. Proceedings of the National
Academy of Sciences, 112(39), 12211-12216.
Campos, W. F., Dressano, K., Ceciliato, P. H., Guerrero-Abad, J. C.,
Silva, A. L., Fiori, C. S., ... & Moura, D. S. (2018). Arabidopsis thaliana
rapid alkalinization factor 1–mediated root growth inhibition is dependent on
calmodulin-like protein 38. Journal of Biological Chemistry, 293(6),
2159-2171
Chen, J., Yu, F., Liu, Y., Du, C., Li, X., Zhu, S., ... & Luan, S.
(2016). FERONIA interacts with ABI2-type phosphatases to facilitate signaling
cross-talk between abscisic acid and RALF peptide in Arabidopsis. Proceedings
of the National Academy of Sciences, 113(37), E5519-E5527.
Deslauriers, S. D., & Larsen, P. B. (2010). FERONIA is a key
modulator of brassinosteroid and ethylene responsiveness in Arabidopsis
hypocotyls. Molecular plant, 3(3), 626-640.
Dong, Q., Zhang, Z., Liu, Y., Tao, L. Z., & Liu, H. (2019). FERONIA
regulates auxin‐mediated lateral root development and primary root
gravitropism. Febs Letters, 593(1), 97-106.
Dressano, K., Ceciliato, P. H., Silva, A. L., Guerrero-Abad, J. C.,
Bergonci, T., Ortiz-Morea, F. A., ... & Moura, D. S. (2017). BAK1 is
involved in AtRALF1-induced inhibition of root cell expansion. PLoS
genetics, 13(10), e1007053.
Du, C., Li, X., Chen, J., Chen, W., Li, B., Li, C., ... & Yu, F.
(2016). Receptor kinase complex transmits RALF peptide signal to inhibit root
growth in Arabidopsis. Proceedings of the National Academy of Sciences, 113(51),
E8326-E8334.
Duan, Q., Kita, D., Johnson, E. A., Aggarwal, M., Gates, L., Wu, H. M., &
Cheung, A. Y. (2014). Reactive oxygen species mediate pollen tube rupture to
release sperm for fertilization in Arabidopsis. Nature communications, 5(1),
1-10.
Duan, Q., Kita, D., Li, C., Cheung, A. Y., & Wu, H. M. (2010). FERONIA
receptor-like kinase regulates RHO GTPase signaling of root hair
development. Proceedings of the National Academy of Sciences, 107(41),
17821-17826.
Duan, Q., Liu, M. C. J., Kita, D., Jordan, S. S., Yeh, F. L. J., Yvon,
R., ... & Cheung, A. Y. (2020). FERONIA controls pectin-and nitric
oxide-mediated male–female interaction. Nature, 579(7800), 561-566.
Dünser, K., Gupta, S., Herger, A., Feraru, M. I., Ringli, C., &
Kleine‐Vehn, J. (2019). Extracellular matrix sensing by FERONIA and
Leucine‐Rich Repeat Extensins controls vacuolar expansion during cellular
elongation in Arabidopsis thaliana. The EMBO journal, 38(7), e100353
Feng, H., Liu, C., Fu, R., Zhang, M., Li, H., Shen, L., ... & Li, C.
(2019). LORELEI-LIKE GPI-ANCHORED PROTEINS 2/3 regulate pollen tube growth as chaperones
and coreceptors for ANXUR/BUPS receptor kinases in Arabidopsis. Molecular
Plant, 12(12), 1612-1623.
Feng, W., Kita, D., Peaucelle, A., Cartwright, H. N., Doan, V., Duan,
Q., ... & Dinneny, J. R. (2018). The FERONIA receptor kinase maintains cell-wall
integrity during salt stress through Ca2+ signaling. Current Biology, 28(5),
666-675.
Franck, C. M., Westermann, J., Bürssner, S., Lentz, R., Lituiev, D. S.,
& Boisson-Dernier, A. (2018). The protein phosphatases ATUNIS1 and ATUNIS2
regulate cell wall integrity in tip-growing cells. The Plant Cell, 30(8),
1906-1923.
Frederick, R. O., Haruta, M., Tonelli, M., Lee, W., Cornilescu, G.,
Cornilescu, C. C., ... & Markley, J. L. (2019). Function and solution
structure of the Arabidopsis thaliana RALF8 peptide. Protein Science, 28(6),
1115-1126.
Galindo‐Trigo, S., Blanco‐Touriñán, N., DeFalco, T. A., Wells, E. S.,
Gray, J. E., Zipfel, C., & Smith, L. M. (2020). Cr RLK 1L receptor‐like
kinases HERK 1 and ANJEA are female determinants of pollen tube
reception. EMBO reports, 21(2), e48466.
Gao, Q., Wang, C., Xi, Y., Shao, Q., Li, L., & Luan, S. (2022). A
receptor–channel trio conducts Ca2+ signalling for pollen tube reception. Nature, 607(7919),
534-539.
Ge, Z., Bergonci, T., Zhao, Y., Zou, Y., Du, S., Liu, M. C., ... &
Qu, L. J. (2017). Arabidopsis pollen tube integrity and sperm release are
regulated by RALF-mediated signaling. Science, 358(6370), 1596-1600.
Ge, Z., Zhao, Y., Liu, M. C., Zhou, L. Z., Wang, L., Zhong, S., ...
& Qu, L. J. (2019). LLG2/3 are co-receptors in BUPS/ANX-RALF signaling to
regulate Arabidopsis pollen tube integrity. Current Biology, 29(19),
3256-3265.
Gigli-Bisceglia, N., van Zelm, E., Huo, W., Lamers, J., & Testerink,
C. (2022). Arabidopsis root responses to salinity depend on pectin modification
and cell wall sensing. Development, 149(12), dev200363.
Gjetting, S. K., Mahmood, K., Shabala, L., Kristensen, A., Shabala, S.,
Palmgren, M., & Fuglsang, A. T. (2020). Evidence for multiple receptors
mediating RALF‐triggered Ca2+ signaling and proton pump inhibition. The
Plant Journal, 104(2), 433-446.
Gonneau, M., Desprez, T., Martin, M., Doblas, V. G., Bacete, L., Miart,
F., ... & Höfte, H. (2018). Receptor kinase THESEUS1 is a rapid
alkalinization factor 34 receptor in Arabidopsis. Current Biology, 28(15),
2452-2458.
Gronnier, J., Franck, C. M., Stegmann, M., DeFalco, T. A., Abarca, A.,
Von Arx, M., ... & Zipfel, C. (2022). Regulation of immune receptor kinase
plasma membrane nanoscale organization by a plant peptide hormone and its receptors. Elife, 11,
e74162.
Guo, H., Li, L., Ye, H., Yu, X., Algreen, A., & Yin, Y. (2009).
Three related receptor-like kinases are required for optimal cell elongation in
Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 106(18),
7648-7653.
Guo, H., Nolan, T. M., Song, G., Liu, S., Xie, Z., Chen, J., ... &
Yin, Y. (2018). FERONIA receptor kinase contributes to plant immunity by
suppressing jasmonic acid signaling in Arabidopsis thaliana. Current
Biology, 28(20), 3316-3324.
Hansen, R. L., Guo, H., Yin, Y., & Lee, Y. J. (2019). FERONIA
mutation induces high levels of chloroplast‐localized Arabidopsides which are
involved in root growth. The Plant Journal, 97(2), 341-351.
Haruta, M., Monshausen, G., Gilroy, S., & Sussman, M. R. (2008). A
cytoplasmic Ca2+ functional assay for identifying and purifying endogenous cell
signaling peptides in Arabidopsis seedlings: identification of AtRALF1 peptide.
Biochemistry, 47(24), 6311-6321.
Haruta, M., Sabat, G., Stecker, K., Minkoff, B. B., & Sussman, M. R.
(2014). A peptide hormone and its receptor protein kinase regulate plant cell
expansion. Science, 343(6169), 408-411.
Huang, G. Q., Li, E., Ge, F. R., Li, S., Wang, Q., Zhang, C. Q., &
Zhang, Y. (2013). Arabidopsis Rop GEF 4 and Rop GEF 10 are important for
FERONIA‐mediated developmental but not environmental regulation of root hair
growth. New Phytologist, 200(4), 1089-1101.
Huck, N., Moore, J. M., Federer, M., & Grossniklaus, U. (2003). The
Arabidopsis mutant feronia disrupts the female gametophytic control of pollen
tube reception.
Keinath, N. F., Kierszniowska, S., Lorek, J., Bourdais, G., Kessler, S.
A., Shimosato-Asano, H., ... & Panstruga, R. (2010). PAMP
(pathogen-associated molecular pattern)-induced changes in plasma membrane
compartmentalization reveal novel components of plant immunity. Journal of
Biological Chemistry, 285(50), 39140-39149.
Kessler, S. A., Shimosato-Asano, H., Keinath, N. F., Wuest, S. E.,
Ingram, G., Panstruga, R., & Grossniklaus, U. (2010). Conserved molecular components
for pollen tube reception and fungal invasion. Science, 330(6006),
968-971.
Kim, D., Yang, J., Gu, F., Park, S., Combs, J., Adams, A., ... &
Nielsen, E. (2021). A temperature-sensitive FERONIA mutant allele that alters
root hair growth. Plant Physiology, 185(2), 405-423.
Kong, Y., Chen, J., Jiang, L., Chen, H., Shen, Y., Wang, L., ... &
Ming, Z. (2023). Structural and biochemical basis of Arabidopsis FERONIA
receptor kinase-mediated early signaling initiation. Plant Communications.
Li, C., Chen, J., Li, X., Zhang, X., Liu, Y., Zhu, S., ... & Yu, F.
(2022). FERONIA is involved in phototropin 1‐mediated blue light phototropic
growth in Arabidopsis. Journal of Integrative Plant Biology, 64(10), 1901-1915.
Li, C., Liu, X., Qiang, X., Li, X., Li, X., Zhu, S., ... & Yu, F.
(2018). EBP1 nuclear accumulation negatively feeds back on FERONIA-mediated
RALF1 signaling. PLoS Biology, 16(10), e2006340.
Li, C., Yeh, F. L., Cheung, A. Y., Duan, Q., Kita, D., Liu, M. C., ...
& Wu, H. M. (2015). Glycosylphosphatidylinositol-anchored proteins as
chaperones and co-receptors for FERONIA receptor kinase signaling in
Arabidopsis. Elife, 4, e06587.
Li, E., Wang, G., Zhang, Y. L., Kong, Z., & Li, S. (2020). FERONIA
mediates root nutating growth. The Plant Journal, 104(4), 1105-1116.
Li, L., Chen, H., Alotaibi, S. S., Pěnčík, A., Adamowski, M., Novák, O.,
& Friml, J. (2022). RALF1 peptide triggers biphasic root growth inhibition
upstream of auxin biosynthesis. Proceedings of the National Academy of
Sciences, 119(31), e2121058119.
Lin, W., Tang, W., Pan, X., Huang, A., Gao, X., Anderson, C. T., &
Yang, Z. (2022). Arabidopsis pavement cell morphogenesis requires FERONIA
binding to pectin for activation of ROP GTPase signaling. Current Biology, 32(3),
497-507.
Liu, C., Shen, L., Xiao, Y., Vyshedsky, D., Peng, C., Sun, X., ... &
Li, C. (2021). Pollen PCP-B peptides unlock a stigma peptide–receptor kinase
gating mechanism for pollination. Science, 372(6538), 171-175.
Liu, C., Yu, H., Voxeur, A., Rao, X., & Dixon, R. A. (2023). FERONIA
and wall-associated kinases coordinate defense induced by lignin modification
in plant cell walls. Science Advances, 9(10), eadf7714.
Liu, X., Jiang, W., Li, Y., Nie, H., Cui, L., Li, R., ... & Zhao, C.
(2023). FERONIA coordinates plant growth and salt tolerance via the
phosphorylation of phyB. Nature Plants, 9(4), 645-660.
Malivert, A., Erguvan, Ö., Chevallier, A., Dehem, A., Friaud, R., Liu,
M., ... & Verger, S. (2021). FERONIA and microtubules independently
contribute to mechanical integrity in the Arabidopsis shoot. PLoS biology,
19(11), e3001454.
Mao, D., Yu, F., Li, J., Van de Poel, B., Tan, D. A. N., Li, J., ... &
Luan, S. (2015). FERONIA receptor kinase interacts with S‐adenosylmethionine
synthetase and suppresses S‐adenosylmethionine production and ethylene
biosynthesis in A rabidopsis. Plant, cell & environment, 38(12), 2566-2574.
Masachis, S., Segorbe, D., Turrà, D., Leon-Ruiz, M., Fürst, U., El
Ghalid, M., ... & Di Pietro, A. (2016). A fungal pathogen secretes plant
alkalinizing peptides to increase infection. Nature Microbiology, 1(6),
1-9.
Mecchia, M. A., Santos-Fernandez, G., Duss, N. N., Somoza, S. C.,
Boisson-Dernier, A., Gagliardini, V., ... & Grossniklaus, U. (2017).
RALF4/19 peptides interact with LRX proteins to control pollen tube growth in
Arabidopsis. Science, 358(6370), 1600-1603.
Moussu, S., Broyart, C., Santos-Fernandez, G., Augustin, S., Wehrle, S.,
Grossniklaus, U., & Santiago, J. (2020). Structural basis for recognition
of RALF peptides by LRX proteins during pollen tube growth. Proceedings of
the National Academy of Sciences, 117(13), 7494-7503.
Murphy, E., Vu, L. D., Van den Broeck, L., Lin, Z., Ramakrishna, P., Van
De Cotte, B., ... & De Smet, I. (2016). RALFL34 regulates formative cell
divisions in Arabidopsis pericycle during lateral root initiation. Journal
of Experimental Botany, 67(16), 4863-4875.
Ngo, Q. A., Vogler, H., Lituiev, D. S., Nestorova, A., &
Grossniklaus, U. (2014). A calcium dialog mediated by the FERONIA signal
transduction pathway controls plant sperm delivery. Developmental cell, 29(4),
491-500.
Restrepo, J. M., Huck, N., Kessler, S., Gagliardini, V., Gheyselinck,
J., Yang, W. C., & Grossniklaus, U. (2007). The FERONIA receptor-like
kinase mediates male-female interactions during pollen tube reception. Science,
317(5838), 656-660.
Shih, H. W., Miller, N. D., Dai, C., Spalding, E. P., & Monshausen,
G. B. (2014). The receptor-like kinase FERONIA is required for mechanical
signal transduction in Arabidopsis seedlings. Current Biology, 24(16), 1887-1892.
Shin, S. Y., Park, J. S., Park, H. B., Moon, K. B., Kim, H. S., Jeon, J.
H., ... & Lee, H. J. (2021). FERONIA confers resistance to photooxidative
stress in Arabidopsis. Frontiers in Plant Science, 12, 714938.
Song, L., Xu, G., Li, T., Zhou, H., Lin, Q., Chen, J., ... & Yu, F.
(2022). The RALF1-FERONIA complex interacts with and activates TOR signaling in
response to low nutrients. Molecular Plant, 15(7), 1120-1136.
Song, Y., Wilson, A. J., Zhang, X. C., Thoms, D., Sohrabi, R., Song, S.,
... & Haney, C. H. (2021). FERONIA restricts Pseudomonas in the rhizosphere
microbiome via regulation of reactive oxygen species. Nature plants, 7(5),
644-654.
Srivastava, R., Liu, J. X., Guo, H., Yin, Y., & Howell, S. H.
(2009). Regulation and processing of a plant peptide hormone, AtRALF23, in
Arabidopsis. The Plant Journal, 59(6), 930-939.
Stegmann, M., Monaghan, J., Smakowska-Luzan, E., Rovenich, H., Lehner,
A., Holton, N., ... & Zipfel, C. (2017). The receptor kinase FER is a
RALF-regulated scaffold controlling plant immune
signaling. Science, 355(6322), 287-289.
Tang, J., Wu, D., Li, X., Wang, L., Xu, L., Zhang, Y., ... & Yu, F.
(2022). Plant immunity suppression via PHR1‐RALF‐FERONIA shapes the root
microbiome to alleviate phosphate starvation. The EMBO Journal, 41(6), e109102.
Tang, W., Lin, W., Zhou, X., Guo, J., Dang, X., Li, B., ... & Yang,
Z. (2022). Mechano-transduction via the pectin-FERONIA complex activates ROP6
GTPase signaling in Arabidopsis pavement cell morphogenesis. Current
Biology, 32(3), 508-517..
Wang, L., Yang, T., Lin, Q., Wang, B., Li, X., Luan, S., & Yu, F.
(2020). Receptor kinase FERONIA regulates flowering time in Arabidopsis. BMC
plant biology, 20, 1-16.
Wang, L., Yang, T., Wang, B., Lin, Q., Zhu, S., Li, C., ... & Yu, F.
(2020). RALF1-FERONIA complex affects splicing dynamics to modulate stress
responses and growth in plants. Science advances, 6(21), eaaz1622
Wang, P., Clark, N. M., Nolan, T. M., Song, G., Bartz, P. M., Liao, C.
Y., ... & Guo, H. (2022). Integrated omics reveal novel functions and
underlying mechanisms of the receptor kinase FERONIA in Arabidopsis thaliana.
The Plant Cell, 34(7), 2594-2614
Wang, P., Clark, N. M., Nolan, T. M., Song, G., Whitham, O. G., Liao, C.
Y., ... & Guo, H. (2022). FERONIA functions through Target of Rapamycin
(TOR) to negatively regulate autophagy. Frontiers in Plant Science, 13.
Xiao, Y., Stegmann, M., Han, Z., DeFalco, T. A., Parys, K., Xu, L., ...
& Chai, J. (2019). Mechanisms of RALF peptide perception by a heterotypic
receptor complex. Nature, 572(7768), 270-274.
Xing, J., Ji, D., Duan, Z., Chen, T., & Luo, X. (2022).
Spatiotemporal dynamics of FERONIA reveal alternative endocytic pathways in
response to flg22 elicitor stimuli. New Phytologist, 235(2), 518-532.
Xu, G., Chen, W., Song, L., Chen, Q., Zhang, H., Liao, H., ... & Yu,
F. (2019). FERONIA phosphorylates E3 ubiquitin ligase ATL6 to modulate the
stability of 14-3-3 proteins in response to the carbon/nitrogen ratio. Journal
of Experimental Botany, 70(21), 6375-6388.
Yang, T., Wang, L., Li, C., Liu, Y., Zhu, S., Qi, Y., ... & Yu, F.
(2015). Receptor protein kinase FERONIA controls leaf starch accumulation by
interacting with glyceraldehyde-3-phosphate dehydrogenase. Biochemical and
biophysical research communications, 465(1), 77-82.
Yu, F., Li, J., Huang, Y., Liu, L., Li, D., Chen, L., & Luan, S.
(2014). FERONIA receptor kinase controls seed size in Arabidopsis
thaliana. Molecular plant, 7(5), 920-922.
Yu, F., Qian, L., Nibau, C., Duan, Q., Kita, D., Levasseur, K., ... &
Luan, S. (2012). FERONIA receptor kinase pathway suppresses abscisic acid
signaling in Arabidopsis by activating ABI2 phosphatase. Proceedings of
the National Academy of Sciences, 109(36), 14693-14698.
Yu, M., Li, R., Cui, Y., Chen, W., Li, B., Zhang, X., ... & Lin, J.
(2020). The RALF1-FERONIA interaction modulates endocytosis to mediate control
of root growth in Arabidopsis. Development, 147(13), dev189902.
Yu, Y., & Assmann, S. M. (2018). Inter‐relationships between the
heterotrimeric Gβ subunit AGB1, the receptor‐like kinase FERONIA, and RALF1 in
salinity response. Plant, cell & environment, 41(10), 2475-2489.
Yu, Y., Chakravorty, D., & Assmann, S. M. (2018). The G protein
β-subunit, AGB1, interacts with FERONIA in RALF1-regulated stomatal
movement. Plant Physiology, 176(3), 2426-2440.
Zhang, X., Peng, H., Zhu, S., Xing, J., Li, X., Zhu, Z., ... & Yu,
F. (2020). Nematode-encoded RALF peptide mimics facilitate parasitism of plants
through the FERONIA receptor kinase. Molecular Plant, 13(10),
1434-1454.
Zhao, C., Jiang, W., Zayed, O., Liu, X., Tang, K., Nie, W., ... &
Zhu, J. K. (2021). The LRXs-RALFs-FER module controls plant growth and salt
stress responses by modulating multiple plant hormones. National Science
Review, 8(1), nwaa149.
Zhao, C., Zayed, O., Yu, Z., Jiang, W., Zhu, P., Hsu, C. C., ... &
Zhu, J. K. (2018). Leucine-rich repeat extensin proteins regulate plant salt
tolerance in Arabidopsis. Proceedings of the National Academy of Sciences,
115(51), 13123-13128.
Zhong, S., Li, L., Wang, Z., Ge, Z., Li, Q., Bleckmann, A., ... &
Qu, L. J. (2022). RALF peptide signaling controls the polytubey block in
Arabidopsis. Science, 375(6578), 290-296.
Zhu, S., Estévez, J. M., Liao, H., Zhu, Y., Yang, T., Li, C., ... &
Yu, F. (2020). The RALF1–FERONIA complex phosphorylates eIF4E1 to promote
protein synthesis and polar root hair growth. Molecular Plant, 13(5),
698-716.